J. van Leeuwen
partment of Computer Science, University of Utrecht

O. Box 80.089, 3508 TB Utrecht, The Netherlands

A variety of design issues for distributed computer systems is explored in terms
of the Client/Server model. An attempt is made to expose the basic ingredients
of the Client/Server model, in order to facilitate further theoretical analyses and
applications in the design of complex systems. Also, a detailed but standard
2-phase commit protocol is presented and verified in a form that is suitable for
applications in distributed systems.

1. INTRODUCTION

Increasingly computer networks and distributed systems are bemg introduced
in traditional apphcatwn environments for computers. Botl al ar "
area networks and their supporting software are bein .
customer demands, and a considerable resea: ed worldwide to
solve the new and complex design issues that come with the development of
distributed information systems. In this paper we will explore remote operations
architectures, which allow for flexible client/server type in teractions between
distributed application processes on top of an existing and reliable transport
level. In such architectures sets of primitives are provided for application asso-
ciation and message passing following a request/reply protocol, with facilities
for service authorization and recovery. The remote operations architectures
usually conform to internationally agreed standards, for the general requir.-
ments of interconnection and interchangeability.

In order to deal with the complex issues of communication and control in a
distributed system, it is necessary to have a comsistent architectural model
underlying the design and development of a system. Additional requirements
are 1mposed by the agreed ISO and ECMA standards for remote operations
and transaction processing. In many distributed systems the client/server para-
digm 1s used to explain the underlying system view, suggesting the possibility
of a formal model and correctness proofs of the design. In this paper an
attempt is made 1o expose the essential ingredients of the Client/Server model
which should be tak unt, in a form that should facilitate the use

This work was carried out as part of a research agreement with NCR Systems Engineering BV,
P.O. Box 492, 3430 AL Nieuwegein, The Netherlands.

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands 193

seen today

A remote operations system comes with pex
architecture’ describes the system from the perspective of an applications pro-

\mn | MMmunj cauons architecture’ describes the available network

that an application may consist of several, distri
that cooperate to achieve some goal. A
tion may exist ‘forever’, 1.e., may have to be supported for an indefin te period
of time. An application (i.e., an application process) will be activated by an
external cause or by another application. Application processes can activate
network services that are generally available. Network services in turn can
activate other network support tasks. In addition, autonomous processes may
exist that play a role in standard network comrol and main
Apphcatmn PIroCesSsCs Communs icate usin g |
architecture. To shield application processes from th tails
provided by the communications architecture, one or more interface modules
can be dCSI p1 ed that pl‘OVldC ‘h.l gher lever’ communications faciliti
work for the high lcvcl description and specification of communications and
interactions between processes. The model is geared to understanding general
Chient/Server architectures, but carries the idea of the model much furth
The model as we describe it only serves as a structuring tool for a network
architecture at the session and presentation layer level. The model is heavily
based on the ‘abstract object’ approach to distributed system design (see e.g.
Watson [33]) and aims at viewing a number of aspects of Client/Server archi-
tectures from this perspective. The abstract object approach has successfully
been applied in other contexts of networking (see Sloman & Kramer [27] for
an extensive summary). It is the specific aim of this paper not to digress into
theoretical analyses and complicated algorithms, but to give an integral view of the
many concrete problems that must be faced in the design and implementation of a
distributed system.

The paper is organized as follows. In Section 2 we will briefly introduce th
issue of distributed computing, the Client/Server model and the notion of
Remote Function Modules. In Section 3 the Client/Server model is presented
in more detail. In Section 4 a large number of architectural issues 1n computer
networks are reviewed from the unifying viewpoint of the Client/Server model.
In Section 5 we present some ideas for implementing the Client/Server model

194

* d apphcatmn processes

can refer to th

there are complex issues of system operation an
D ditional computer applications, an " d i
Peterson & Silberschatz [25])).

There are a number of different approaches that can _
design of distributed Sy (a) the Hierarchical model, an
Client/ Server model. In the Hierarchical model, an executin g program
send subtasks to other machines for execution. The model is suitable for appli-
cations that have a hi ' tructure and 1s commonly found, for example,
in distributed database systems (see e.g. [6]).
Ing network to provide a service like ‘send subtask X to another machine (or,
to machine Y)" and some form of message passing between a program and its
subtasks. In some cases it is possible to send the complete code of a subtask to
another machine. More often it is possible to ‘call’ a stored copy of a program
at the other machine and pass it the necessary parameters and/or data in some
form or another, like in systems that implement remote procedure calls (RPC)
as described in Birrell & Nelson [4]. Normally program execution is not
resumed until the result of a subtask has been received.

In the Client/Server model, each program may request services from desig-
nated service providers (servers) that are shared with other users or application
programs and that are usually situated on other machines. Examples of
Servers are: name servers, file servers, printer servers and other special programs.
Again the model requires the network to provide a suitable interface for
expressing and transporting service requests, and it is common to use the logis-
tics of remote procedure calls or a relaxed, asynchronous version of it. In par-
ticular, a server call should not keep the calling program from further execu-
tion.

From a systems point of view the Client/Server model subsumes the
Hierarchical model, although the requirements of control will be more com-
plex. But in many respects the Client/Server model seems to be the more

195

1 h e model requj_[‘es the Sup DO It-

the notion of a Rem

can be used Wll'_hout necessal

aking use of other (lower level) remote fun
tion modules facilitate hierarchies of abstractions, a known &
in system design.

. THE CLIENT/SERVER MODEL

[he rationale for the Client/Server (or Customer/Server) model was fis
; identifi ed the 1ssues that need to be resolved

in any system designed from this perspective. The Client/Server paradigm is

now standard in distributed system design (see Comer [7]).

The Chient/Server model can be viewed as a model for process interaction.
One process (A) 1dentified as the client, requests a service from some other pro-
cess (B) which acts as the server. The server, after performung the requested
service, posts a reply to the client. The client-server relationship between A
and B exists only for the duration of the interaction. Thus a process that acts
as the chent in one interaction may become the server in another, and vice
versa. We will later allow that servers request services from other processes
while processing a request and thus act as server and client simultaneously.
The Chent/Server model is recognised in distributed systems based on the
remote procedure call (RPC) paradigm (see e.g. Lampson [20] and Birrell &
Nelson [4]) or the nested transaction paradigm (Moss [23]).

3.1. Requests and replies

The request of a client (A) must be passed to the server (B) in a specifi
Ideally it should be immaterial to the model whether B is local to A or remote.

The same formats and procedures should apply in either case. In the
196

calied ‘comnection-oriented int erdac-
Server model requires tl

alternatives for th ent to observe replies i

3.2. Complications because of possible failures

[he Client/Server model is deceptively simple when comm
and other failures are not taken into consideration. There are various types of
communication failure that can occur: messages may be lost or ‘stuck’ (e.g.
because of deadlock), messages may be undeliverable (e. g. because one or more
communication lines are down), and processes may ‘die’. Failures complicate
the simple interaction scheme of the Client/Server model, because failures
directly affect the request/reply mechanism. In particular, the reply a client
receives on a request should either be a valid reply from the server or an indi-
cation that no valid reply from the intended server can be obtained because of
some (identifiable or non-identifiable) failure. In the Client/Server model, a
cient must receive a reply (and no more than one) to every request it sends
out, and the replies received must correspond exactly to the ‘facts’ for the asso-
ciated requests. It follows that replies are not simple and must be ‘Interpreted’.
In the model adopted in this paper, replies strictly follow the Client/Server

paradigm.

inication failures

3.3. The use of timers
Failures affect the Client/Server model in yet another way. In physical com-
munications systems, it is common to guard for failures by the use of positive
acknowledgements and timers. Acknowledgements can be mer ged In with
replies, but timers are different entities. Svobodova et al. [29] discuss the
difficulty of ‘tim ameters’ for programming at length, but there is no
uestion that timers are often the simplest and most adequate solution to com-
munications control problems in concrete systems. For exam ple, timers are
used in the implementation of reliable remote procedure calls (see e.g. Lampson
[20] or Shrivastava & Panzieri : '

c.g. Fletcher & Watson [8] or Tel [32]), and for ‘crash control’ in transaction

197

is willin g to wait for new’ requests fro m one of its clients wz f}'o m 1
ular session. (It is common to assume that the correspon din g U
the timeout value each time a mew request in the session 1S recewed bef ore
cout.) Multiple f imers must be im ple mented explicitly by mean N
tal timeout queues (as described in e.g. Tanenbaum [30]). In all
timeouts are handled as interrupts, and some action must be specif
timeout occu the client side it typically involves ‘retrying’ a request
tim ed out, Wthh leads to the problem of duplicate detection by

the server side a session that timed out is to be closed explicitly. In
described in this paper we will ume that timeout values can be specif

all requests. (Semantically the use of timers by a server is part of the session-
management protocol and not of the Client/Server model.)

3.4. Sharing and concurrency

An important aspect of the Client/Server model is the fact that servers can be
shared. It implies that any number of clients can independently request the ser-
vices of a same server process B, and (hence) some pohcy must be set for every
server of how to handle ‘simultaneous requests’. In case all client-server
interaction is session-oriented (as in most Client/Server architectures),
1cy must essentially indicate whether a server can support only one session at a
time or multiple sessions simulta eously [n the Client/Server architecture this
has led to the distinction between °‘single-threaded and ‘replicated servers,
respectively. The effect of concurrent sessions must be equivalent to the effect
of some serial ordering of the sessions, in order to guarantee that semantically
each session can still be regarded as the unique association between one client
and the server. It follows that a server can be of the ‘replicated’ type only
when 1ts semantics allows for it. When server replicas do not share resources,
the semantic constraints are trivially satisfied and the effect is that of many
chents having their own copy of the server and (thus) having access to the
same services individually. In the Client/Server architecture, a syntactic
difference can be made between single-threaded and replicated servers at the
level of the allowable primitives.

the pOl—-

3.5. More complex atomic actions

Aside from ‘many-to-one’ interactions, the Client/Server model may allow for
‘one-to-many’ interactions between processes. In this case, a client process (A)
requests the services of various servers and (hence) engages in mulhple sessions
simultaneously. It is the client’s task to synchronize the various sessions, when

198

[he ‘ vocaﬂon of a remote opera-
tion triggers anism th at i1s (or, should be) largely AN S|

to the application process, an d whose sole purpose is to perform th
operation rehab ly and return thc result to th . voker. (N ote that the ‘result’

rmeda the present tume.) 1he design of some Client/Server archi
su ggests that invocations should be handled by a Common Client Module, or
CCM. The CCM provides the same support to all application processes run
ning on a given processor. An application process can invoke a remote opera-
tion by passing a suitable ‘operation request block’ to the CCM. In fact, the
CCM may maintain a queue of outstandin g operation requests for each (local)
application process. An operation request block must have a well-known format,
including fields for e.g.

(1) the logical name of th ting application process (the client),

(1) a umque identifier for the request (e.g. a sequence number),

(1) the logical name of the desired remote operation,

(1v) class information about the desired remote operation,

(v) parameter values for the desired remote operation,

(vi) a pointer to the ‘operation result block’,

(vn) reserved fields for use by the CCM,
(vi)the size of the operation request block.

The operation result block corresponding to each operation request must have a
well-known format as well. (It obviously is sufficient for an application process
to pass a pointer to the appropriate operation request block when invoking a

remote operation through the CCM.)

4.2. Binding

The CCM must see to it that each operation request is shipped across the net-
work to the appropriate service provider, and that the result of the operation
request is written back into the corresponding operation result block. In order

199

peration result 1S dehvered back to ti
ussion of the design considerations for mes-
of Chem/ Server -

rab le-leng th messages
and operation result block
- at a message
he network add:

the connection. In general
th er att ibu tes | like the ope

and the only status inform.
lal' servers are avail ab le all " T Vs
be part of a potential client’s .Bmd repl result block)

4.5. Common Server Modules

In a ¢

Modul . M authorizes
S€ess10ns, ‘mterpretes and dlspatches operation
Ep hes tO clients. The CSM the serve.-
ty of a session handler an

requests to |
version of th

further 1ssues relat ed to it will

and o

. gt auon Of the p AT
that 1t can perform
i d]_'eplies_

Icular server it supports in a

standard fo rm at, in order the necessary validations of

operation requests

4.6. Maintaining connections

cceeded 1n ‘binding’ a server process (B), the server is

prepared to receive and process any suitable operation request which the client

if the pr O%SSm g Of th

annot be revoked.

her an operation request 1s block-
LIrpose of connection and

or 1s -- . Blocking requests
in general a server will have to know whei
ing or non-blocking at the client’s end, for th
resource man agemcnt. In some architectures thi Ay
can be oblivious to the class inform auon of an operauOn In thi th

I DIm U.VCS cm rcmm_n of a S11D K1 eed need to be no more

ecific acuons sessmns) and 1nf
effects for outstanding operatmn requests. The handlin nd
must be part of the .rep/ primitives. In a Client/ Server architecture this may
a1l be handled by the CCM and CSM modules, thus prow din g the chent with
a request/reply mechanism of simil

4.7. Failure semantics

un the possibility of failures complicates the Client/Server model and
the design of the common interface modules in the Client/Server archi-
tecture as described. For example, it must be carefully specified what perfor-
mance of remote operation requests is required under different conditions of

mmun canon OT Processor failure. If only comm umca.twn failures can occur,

semantics f or remote operations. (The ‘exactly-once’ semantics is usually pre-
ferred and guaranteed in RPC-based remote operations architectures, cf. Bir-
rell & Nelson [4].) If processor failures can occur as well, several other options
have been proposed (cf. the detailed taxonomy in Spector [28]). A discussion
of rehability issues in the Client/Server model is deferred to a later section. In
most Client/Server architectures, all communication requests are handled by a
rehiable transport level. In this case communication failures (errors and net-

work problems) reported to a client are all connection-oriented.

202

Lhey exist at some (lo gi cal) level of process

distineuish between clients and servers as
work and clients 3 d Servers as
interaction.

5.1. Building blocks

[he appa,rcnt lack of uniformity in client and server structures makes it
difncul ISTUN U Sh COoOMmMmmMmaon b l . g block_s Oon W " ch tih c C]j_ent / Serv er
model can be based. At an abstract level all notions related to the theory of
concurrent processes (see e.g. Peterson & Silberschatz [25]) can be brought to
bear on the Client/Server model, but this clearly does not fully capture all
requirements in a concrete network context. In this section we will describe the
notion of a Remote Function Module (RFM) as a possible basis for the
Client/Server model. RFMs are intended primarily for structuring purposes in
the design of Client/Server architectures. Thus, designs and specifications
should be written 1in terms of RFM S, but the 1m plementation lan guagc need
not support the concept as such (as long as its semantics can be realized
somehow). Every application, whether client or server (in the network sense),
will be composed of a num ocal processes and RFMs. At the same ti

the necessm'y suppon environm ent for REMs as we will

describe it implies a
odule-concepts.

5.2. Structure of RFM
REM essenﬂally is a set of functions that can be used by or use functions of
[hus i1t consmts of a set of entry functions (for local or
ngd dmr 1ine (ex_ecutcd 21} 21 O
data (accessible ths ough the functi
RFMs resemble tasks in Ada (see e.g. Barn
A1 . RFMs are entire sclf—-con tained, exoept for the

internal use)
Cr eatlon Of

203

the Netbi1os) as one RFM th ocal
IC trans port level servi ccs : h 1s th

the network sense.

dePend on th K FMS 1t | nects. (| he usual conn ECUOH

connector 1is that 1t connects local RFM thus provides for a high degree
of configuration independence and ease of testability. As a RFM, the network

204

work addresses. In
manager 1s designed

more complex acuons like the creation (and eventu ly, the destru

coples of a RFM 1n case of shared access thi CP hication’ pohcy. It
seems better to handle the level of dministrator however. Of
course the configus manager will the creation (initializa

tion) and destruction (termination) of RFM

| and put in cgc of

5.6. Use of RFMs

The few abstractions on which the given view of th
based, are simple and yet suffici rful to accommodate an integral
presentation of any Client/Server architecture. For example, authorization
requests are easilly understood i the request/ reply interaction
between two suitably defined RFM i) 1l clients and
servers are explicitly specifi R] FIMS the entry fun
they provide for local and remote use. All addltmnal services like loggin
security services can be fit into the framework. Note that such services can be
reahzed by either enhancin g the internal specification of the RFMs (without
hanging tl RIEFMSs) or by introducing ‘filters’ between
e] ty of connectors can be enhanced to pr ovide for
cilities. For example, connectors may be designed for governing
one-to-many rather ti and the necessary con-
b earch project to develop the

complete Chcm/ Server model along thc hnes suggested. All

205

1an ge of request/ rly Messages between the two. Unbm ding is th
isconnecting (releasing) a binding.

6.1. Naming
'The naming problem 1n distributed systems 1s well-known. Nam

uniquely) identify objects and operations but are of ten requ:u'ed to be
locauon—md pendent. It foﬂows that a mechana: na

_ : [he naming policy adopt d

in a Client/Server model is important, and must be conveni the applica-

tion level and efficient when it comes to binding. (Also the um queness or

non-am biguity of a name should be easy to verify durin O

Mull guished four different naming po]_lc:[es

buted systems for determining system names for services:

(1) domain naming: a system name consists of a host name and an object
name on this host. The policy is simple but not very flexible, as 1t does
not allow objects to move through the network without changing th
tem name.

(1) global naming: a system name is any globally unique name. In this

or dlstnbuted) name server is needed to completc the binding. The nam

server should be at a well-known address, and is in charge of maintainin

the name-location information. The binding procedure may au mcnt a

system name by a port name (both at the client’s and the server’s end) to

further 1dentify a temporary access point for the connection.

(11) static port naming: a system name is a ‘well-known’ port. In this policy
ports are associated with services rather than objects. A client wishing to
connect to a service only needs to know the (network-wide) well-known
port. The service provider sees to it that an object (a process) is main-
tained for every port that is accessed.

(1) dynamzc port naming: a system name is a port that is created and managed
by a “user’. When a server decides to offer a service to the network, it gen-

erates a port for that service, announces the port S nmame to potenual

chients, and starts ‘listening’ to the port (i.e., it is willin g to engage in a

connection at this port). The action of the server can be triggered by a
signal from a particular client, which may have allocated a reply port at

its end (but which the server does2 (1)160t have to know).

8y ! 1 l and Clg 148 muo
Papcr) Mhe N

nguish the whole prowss. []
rim nve but will

enendin g on the mod el asSum
conn ecz-to -server: the client possesses th
It sends ner TPDU (‘TranSP Ort- Pro tocol-
connect-to-port: thc chent wai ts until th '

207

ting up a " connecuon record. Now two pohcws

4. R eleasz n g connections
' 88 I ' § g (rel wekle

the desired
ults in an ACK as soon as
tandin g messages Of the chient. TI
4 quest from ltS end and a simil

following the ISO standards. Unbm -‘: ng is achieved by releasing th
tion record and removing the port that existed for the connection, by smtablc

actions at the sending and the receiving end.

Client/ Server model assumes that clients and servers interact strictly on a
[n applications it may be desirable that a chient and a
uring a sessmn and engage 1n an

s af INTorm aUOH StOI'Cd

activity (a set of operations or ‘an
' e Chcnt aﬂd the SCITVET Sl ul i

crashes) can uring an atomic action. Y yii
refer to any abnormal condition that arises during an atomic action. 1h
bility of fail ures requires that the effects of an atomic action must be recover-
able at all tim ths oughout its elaboration, un til the atomic action can be
regarded as saf ely completed’ at both ends. The implementation of atomic
actions thus requires two basic facilities (see e.g. Gray [10]):

208

7 1. Implementation of atomic actions
'he implementation of atomic actions in th
well-studied proble m. In this section we will
atomic commit problcm, as lt will pear i

dation for the plementanon of atomu .

standard of ISO [13]. It suggests th mmit Protl fo].l so
version of the well-]

known 2-phase commit proocol due to G
son & Sturgis [19], and use the following primitives:
(1) C - BEGIN

of the protocol than i ually gven (cf [2 6]) and prove its correctness. As it
vill require no extra effort, we will describe the protocol for the more general
case of a client-initiated atomic acuon that involves multiple servers. It is
assumed that the client remains the ‘coordinator’ (or “superior’) of the atomic
action and thus of the atomic commit protocol [he client will only initiate
the commit protocol (with a C-PREPARE primitive) if it has reason to do so,
1.e., if the activity of the atomic action at its own site has ended (which implies
that the servers have Provrlded their Op eration results insofar as needed by the
chent). At all tim acuon, the client and the servers must
be ready to honor a C-ROLLBAC RESTAR T request from any party
in the atomic action. Note that th unicate with the client,
but not with each other (durin

the protocol 1n
in this execution, if al

n g period of tim

S101.

can be viewed as the minmn
_ cept for AC1, the reqmremems are tak
et al [2]) AC1 through AC5 can usually be satisfied quite easil
reqmres that a suitable reCovery procedure is part of the protocol Note th
a_f ter voun g C- RHAT) Y a p (chent O Servel') can not bc CeI;; L Of Wha,t
ill be until it has recei uff form aﬂon to demde Until

the decision wi
that moment, we say that the party is ‘uncertain’. I
an uncert. (NS Pﬂty 1S Smd to be ‘blOCk ed’ .
cannot reach a dec:swn until after the con nection to the other parties has been

LN rtaini y PCI'lOd leuristic commit p]_‘otocol S
all make a calculated guess of the demsmn
sions of the protocol a blocked client is all mmy lif
tion arises when a party fails (crashes) durin Lain od. Ir
case a more involved recovery procedure may have to be fo lowed (see
stein et al. [2] or below).

7.3. The 2-phase commit protocol

The standard (2-phase) atomic commit protocol is as follows, in terms
recommended CCR primitives. (Note that the desired steps of the recovery
procedure after failure are part of the overall protocol, but th
included 1in the basic specification below.)

210

\wait answer messages (C-READY

end;
{End of Phase 1}
Phase 2
0-4 - W te ‘00 anhnt t’ I'@COI'd to the LO g;
c-6. { Await answer messages (ACK) from all

timer and act as f OHOWS}

¢ tumer,
Servers using a

I . Write ‘incomplete’ record to the Log;
. All servers answered (ACK):
Write ‘complete’ record to th

end;
(End of Phase 2)

211

. DY ge to th

Write ‘refuse’ record to the Log;
Send a C-REFUSE message to the client
end
s-3.3. Timeout:
Write ‘refuse’ record to the Log
end;
{End of Phase 1}
Phase 2
the chient usin; L timcr;
{The server will only pass this point if it has indeed
received a decision message from the chient or times
out}
s-5. Case condition of
s-5.1. a C-COMMI

1T messa ge with received:

Write ‘commit’ record to the Lo g;
Send ACK message to the chent;

s-3.2. a C—ROLLBACK message was received:

Wnte ‘rollback’ message to the Log;
C-ROLLBACK
end;
s-5.3. Timeout:
take whatever action to deal with blockin

ena:

>

{End of Phase 2}

212

7.4. Correctness proof
tness proof’ for th
. We refer to lin

through ACS5 are, trivially satisfied. For AC2,
(chent or server) decides spontaneously for C-
th 1l parties must follow suit eventuall y and can-
thing else. AC6 is vacuously true.

note that 1f any party
ROLLBACK when i
not decide for any

[he next step 1s to consider the possibil ty of tim
failures, namely ‘loss of protocol m essagcs [n &
loss necessarily leads to a t
only. The one excep
-REFUSE) have
REFUSE. In this case the client acts just lik
i (line c-3.1.). Note that heavily delayed messages are considered ‘lost’.

[EOREM 7.4.2. If timeouts and loss of messages can occur but no server gets
blocked, then the 2-Phase Commit Protocol is correct.

trivially satisfied. For AC2,

.1t a scrvcr limes out on s-1, it will never send a message

ROLLBACK (if it ever decides, cf. s-3.3.). The clhient

arily executes c-3.1. and decides for C-ROLLBACK too. Other servers

time out on s-1 as well or receive the C-ROLLBACK decision i1n s-4. By
' times out on s-4 (the blocked case). If the client tim

213

[he purpose of the Server’ s Commit Te rmination pro-
tocol 1s to enable a block ed server to determine the (apparent) demswn
reached in the system. Several possible strategies for a successful
mit Termination protocol have been proposed, all ed
example, if another server can be reached and 1t appears to have tim
s-1, then the blocked server can decide C-ROLILBACK.) But no Server’s Com-
mit Termination protocol can guarantee that it will remove the possibi]ity of
bloc k1 g (For example, if a blocked node 1s cut off permanently, it will forever
main uncertain.) We assume that any server can eventually reach the client
again and thus a simple polling of the client will do as a Server’s Commit Ter-

mination protocol (cf. requirement AC6). We conclude the following result.

2OREM 7.4.3. If timeouts and loss of messages can occur, then the 2-Phase
mmit Protocol enhanced with the Server’s Commit Termination protocol is
correct. '

[he final step is to allow timeouts and arbitrary failures, 1.e., ‘loss of proto-
col messages’ and ‘site crashes’. If a site crashes permanently, the 2-Phase
Commut Protocol will simply continue in the remaining sites and perform as if
the messages of the crashed site are lost from some point onwards. The
Server’'s Commit Termination protocol should be extended in this case and
somehow detect permanent crashes of the client. In general there is no
guaranteed solution that avoids blocking, if permanent crashes can occur. Th
we assume that each site that crashes eventually recovers and resumes the com-
mit protocol. We also assume that a site can actually recover to the point
where it crashed, using the information in its log. The only problem now is to
determune how to continue with the commit protocol, knowing that the other
sites may have advanced in it after the crash. We present a possible recovery
protocol below.

214

cr-2. If th

{ Await answer messages from all servers usin g
timer and act as follows}

Im Write ‘incomplete’ record to th
All servers answercd

C- CO MMIT
end;
cr-3. thc chent crashed after c-6.2. the

C-ROLLBACK
end;
ST-2. If the server crashed after s-4 while being uncertain

use the Server’'s Commit Termination pfotoool
to remove blocking
end;
Sr-3. lf the server crashed after s-4 whil

le being certain

perform remaining activity if necessary in the
C-COMMIT or C-ROLLBACK
(whatever applies)

end;

215

ROLILBACK. and sr-l is fully consmtem. with tha
_ /110 READY message, hen either it had decided
(and the dec1310n 13 recovered) or is ‘uncertain. Th and sr-3 are the
actions to take. With the earlier an alyses it easﬂy follows that the complete
protocol satisfies ACl through AC6 and hence 1s correct. [

REFERENCES
1.

ARNES (1982). Pro gramming in Ada, Addis esley Publ. Comp_ :

2. P.A. BERNSTEIN, V. HADZIL.ACOS, N. GOODMAN (1987). Concurrency Con-

trol and Recovery in Database Systems, Addison-Wesley Publ. Comp.,

. CHING, E.D. LAZzOWSKA, J. SANISLO, M. HW
(1986) A Remote Procedure Call Facility of Heterogeneous Comp
tems, Techn Rep. 86-09-10, Dept. of - Computer Science, Umversity of

). BIRRF LL B.J. NELSON (19 84) Implementing remote proced
A C M Trans. Com Dul. Syst 2 39-59.
5. CCITT (1987). Remote Operations [part 1]: Model, Notation and Service
Definition, draft version, CCITT-COM VII- 116 E.
6. S. CeRri, G. PELA GATH (19 84) Distributed Databases— Principles and Sys-
tems, McGraw-Hill B NS
7. D. COMER (1987)
with XIN U

ne II: Internetworking

20.

21.

22.

23.

24.

25.

26.

27.

28.

S torage System I Tec hn.

Alto Ca.

B. LampsoN (1981). Rem oced
(eds) Distributed Systems—A rchztecture and I
in Comput Sci., Vol. 105, Sp ringer Verlag, Berli
Dz.s'm buted S VS temsmA rchz tecture and In

ET AL.

B. .LAMPSON ET AL. (eds.).
D Iemematzon Lect. Notes in

: Symp. Relzab Dzsmb Software and Datab Syst 42-48
. MOss (1985) N ested Transactions—An Approach to Reliable Distri-
mputing, 1 VII'T Press, Cambrid ge, Mass.

MULLENDER (1985) Principles of Distributed Operating System
Deszgn, Ph. D. thesis, Free Unmiversity, Amsterdam.
J. L ETERSON, A. SILBERSCHATZ (1983). Operating System Concepts,

. PANZIERI (1982). The design of a rehable remote

. Comput. C-31, 692-697.
N, J. KRAMER (1987) Distributed Systems and Computer Net-
works, Pren tice-Hall Int. (UK) Ltd London.
A.Z. SPECTOR (1982). Performing rcmote operations efficiently on a local
computer network. Comm. ACM 25, 246-260.

217

. TE L (1987) Asserti onal Verz ﬁcatzon of a Timer-B ased Protocol

W. WATSON (1981) D tributed system archs B.W.
[AMPSON ET AL. (eds) Distributed Systems—Architecture and I mplementa-

[ect. Notes in Comput. Sci., Vol. 105, Springer Verlag, B

rH (1982). Programming in Modula-2, Springer-Verlag, B

218

